Análisis de las diferencias entre instalaciones de depuración: evidencia para la Comunidad Valenciana

Autores/as

DOI:

https://doi.org/10.14198/Sostenibilidad2020.2.06

Palabras clave:

depuración de aguas residuales, tratamiento terciario, tamaño de planta, costes de depuración, rendimientos de eliminación, capacidad instalada.

Resumen

La presente investigación examina la situación actual de la depuración de aguas residuales en la Comunidad Valenciana de España con el objetivo de obtener información relevante para mejorar la gestión de las plantas y estudiar la viabilidad de la implantación de tratamiento terciario en lugares donde no se disponga de él. Los resultados obtenidos mediante técnicas de agrupación muestran la importancia del tamaño de la planta sobre los costes, pues en el análisis se puede observar el menor coste unitario soportado por las plantas de mayor tamaño debido a la presencia de economías de escala. Además, los rendimientos de eliminación de agentes contaminantes, el aprovechamiento de la capacidad instalada y la presencia de tratamiento terciario se muestran relevantes de cara a explicar las diferencias existentes entre plantas, de modo que los resultados obtenidos son de gran interés para el diseño y la gestión de las plantas de depuración. Por último, este estudio supone un incentivo para la obtención de información, pues muestra el gran margen de mejora existente en la realización de esta actividad.

Financiación

Universidad de Alicante, Instituto Universitario del Agua y las Ciencias Ambientales de la Universidad de Alicante

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abba, S. I., Pham, Q. B., Usman, A. G., Linh, N. T. T., Aliyu, D. S., Nguyen, Q. & Bach, Q. V. (2020). Emerging evolutionary algorithm integrated with kernel principal component analysis for modeling the performance of a water treatment plant. Journal of Water Process Engineering, 33, 101081. https://www.sciencedirect.com/science/article/pii/S2214714419316678?casa_token=tP5_MdriZj4AAAAA:DuFQiCUp2ntuVnBSKSikNufYcHEa0FkFnT0E0mcZnFOxXD9m52-V0dlWzw_dSPXQbSs9UMqFASU

Alver, A. & Kazan, Z. (2020). Prediction of full-scale filtration plant performance using artificial neural networks based on principal component analysis. Separation and Purification Technology, 230, 115868. https://www.sciencedirect.com/science/article/pii/S1383586619324086?casa_token=mspUB5kesgAAAAA:GcsBNrlHdKS3vg_sc6OqFgRcRiSUDUpqtmGT3Pihy3depsRp5Zc4LCBMCu9T5FijJ9nzU2DHUE8

CONAMA 9 (2008). Congreso nacional del medio ambiente: Cumbre del desarrollo sostenible, Madrid. http://www.conama9.conama.org/bo/bancorecursos/banco_imagenes/conama9/Informe%20CONAMA%209/informe%20CONAMA%209.pdf (Consultado 01/06/2020).

Dreizin, Y. (2006). Ashkelon seawater desalination project—off-taker’s self costs, supplied water costs, total costs and benefits. Desalination, 190(1-3), 104-116. https://www.sciencedirect.com/science/article/abs/pii/S0011916406001287

EPSAR (2019). “Memoria de Gestión”. Ejercicios 1993-2018. Entidad Pública de Saneamiento de Aguas Residuales de la Comunidad Valenciana, Valencia. Disponible en: http://www.epsar.gva.es/sanejament/instalaciones/buscador-edar.aspx (Consultado 01/06/2020).

EU (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. https://eur-lex.europa.eu/eli/dir/2000/60/oj?locale=en

Ghaffour, N., Missimer, T. M. & Amy, G. L. (2013). Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination, 309, 197-207. https://repository.kaust.edu.sa/handle/10754/562573

Haller, L., Hutton, G. & Bartram, J. (2007). Estimating the costs and health benefits of water and sanitation improvements at global level. Journal of water and health, 5(4), 467-480. https://www.ncbi.nlm.nih.gov/pubmed/17878561

Hutton, G., Haller, L., Water, S. & World Health Organization. (2004). Evaluation of the costs and benefits of water and sanitation improvements at the global level (No. WHO/SDE/WSH/04.04). World Health Organization: Geneva. https://www.who.int/water_sanitation_health/wsh0404.pdf

Jayaweera, C. D. & Aziz, N. (2018, December). Reliability of Principal Component Analysis and Pearson Correlation Coefficient, for Application in Artificial Neural Network Model Development, for Water Treatment Plants. In IOP Conference Series: Materials Science and Engineering (Vol. 458, No. 1, p. 012076). IOP Publishing. https://iopscience.iop.org/article/10.1088/1757-899X/458/1/012076/meta

Mahamuni, N. N. & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrasonics sonochemistry, 17(6), 990-1003. https://pubmed.ncbi.nlm.nih.gov/19879793/

Marzouk, M. & Elkadi, M. (2016). Estimating water treatment plants costs using factor analysis and artificial neural networks. Journal of Cleaner Production, 112, 4540-4549. https://www.sciencedirect.com/science/article/pii/S0959652615012366?casa_token=C3VphHpjrwMAAAAA:9fYlzjvJPrCgTFHkSXjsJSEPa3VqwHQzySOJLacDEMtrmX1BOfv-TZR8VIOj2R9WeFCWwUZ6_UM

McDonald, R. I., Weber, K. F., Padowski, J., Boucher, T. & Shemie, D. (2016). Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities. Proceedings of the National Academy of Sciences, 113(32), 9117-9122. https://www.pnas.org/content/113/32/9117

Melgarejo, J., Prats, D., Molina, A. & Trapote, A. (2016). A case study of urban wastewater reclamation in Spain: comparison of water quality produced by using alternative processes and related costs. Journal of Water Reuse and Desalination, 6(1), 72-81. https://iwaponline.com/jwrd/article/6/1/72/30249/A-case-study-of-urban-wastewater-reclamation-in

Mjalli, F. S., Al-Asheh, S. & Alfadala, H. E. (2007). Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. Journal of Environmental Management, 83(3), 329-338. https://www.sciencedirect.com/science/article/pii/S0301479706001228?casa_token=w9avtZNS-TEAAAAA:3gV37CMkaxIGDMDDXm33g9i9K4vXYBb-u-jTy2OzTbgAGm3Ivilc6a2-tZWmJ6UVOsKUwVHLg1s

Nascimento, A. L., de Souza, A. J., Oliveira, F. C., Coscione, A. R., Viana, D. G. & Regitano, J. B. (2020). Chemical attributes of sewage sludges: Relationships to sources and treatments, and implications for sludge usage in agriculture. Journal of Cleaner Production, 120746. https://www.sciencedirect.com/science/article/pii/S0959652620307939?casa_token=LpblCmg2y1kAAAAA:d42rOaHt_H9ta5EPjvzdrRJyGfapuZZCVUXdogaCpanS__sbevIjGmL3vdfbfo-rZS-3U1u0GOA

Navarro, T. (2018). Water reuse and desalination in Spain–challenges and opportunities. Journal of Water Reuse and Desalination, 8(2), 153-168. https://iwaponline.com/jwrd/article/8/2/153/38035/Water-reuse-and-desalination-in-Spain-challenges

Plappally, A. K. & Lienhard, J. H. (2013). Costs for water supply, treatment, end-use and reclamation. Desalination and Water Treatment, 51(1-3), 200-232. https://www.tandfonline.com/doi/abs/10.1080/19443994.2012.708996

Qasim, S. R., Lim, S. W., Motley, E. M. & Heung, K. G. (1992). Estimating costs for treatment plant construction. Journal‐American Water Works Association, 84(8), 56-62. https://www.jstor.org/stable/41293817?seq=1

Shah, K. L. & Reid, G. W. (1970). Techniques for estimating construction costs of waste treatment plants. Journal Water Pollution Control Federation, 776-793. https://www.jstor.org/stable/pdf/25036567.pdf?seq=1

Shahmansouri, A. & Bellona, C. (2015). Nanofiltration technology in water treatment and reuse: applications and costs. Water Science and Technology, 71(3), 309-319. https://iwaponline.com/wst/article/71/3/309/18777/Nanofiltration-technology-in-water-treatment-and

Wiesner, M. R., Hackney, J., Sethi, S., Jacangelo, J. G. & Laîé, J. M. (1994). Cost estimates for membrane filtration and conventional treatment. Journal‐American Water Works Association, 86(12), 33-41. https://awwa.onlinelibrary.wiley.com/doi/abs/10.1002/j.1551-8833.1994.tb06284.x

Yongguan, C., Seip, H. M. & Vennemo, H. (2001). The environmental cost of water pollution in Chongqing, China. Environment and Development Economics, 6(3), 313-333. https://www.cambridge.org/core/journals/environment-and-development-economics/article/environmental-cost-of-water-pollution-in-chongqing-china/0976E880A719DACEAA6DB12623E32DC3

Zarzycki, P. K., Ślączka, M. M., Włodarczyk, E. & Baran, M. J. (2013). Micro-TLC approach for fast screening of environmental samples derived from surface and sewage waters. Chromatographia, 76(19-20), 1249-1259. https://link.springer.com/article/10.1007/s10337-013-2445-3

Estadísticas

Estadísticas en RUA

Publicado

15-07-2020

Cómo citar

García López, M., & Montaño Sanz, B. (2020). Análisis de las diferencias entre instalaciones de depuración: evidencia para la Comunidad Valenciana. Sostenibilidad Económica, Social Y Ambiental, (2), 79–94. https://doi.org/10.14198/Sostenibilidad2020.2.06

Número

Sección

Miscelánea