Evaluación de la zeolita como mejorante del suelo agrícola para paliar la calidad del agua de riego
DOI:
https://doi.org/10.14198/Sostenibilidad.29693Palabras clave:
sorción, cinética de sorción, agua de riego, delineamiento del compuesto central rotacional, eliminación de cationesResumen
Cada vez los problemas de disponibilidad de agua para riego son más frecuentes, lo que nos lleva hoy en día a utilizar cada vez más fuentes de agua de menor calidad agronómica, como aguas con niveles significativamente altos de sodio o de boro, elementos con un impacto en el desarrollo y la producción de los cultivos. Ante ello, encontrar métodos novedosos para inmovilizar estos compuestos poco deseables en el agua de riego es una de las principales prioridades del sector agrícola mundial. Este estudio se centró en explorar el potencial de la zeolita natural, utilizada habitualmente como mejorador del suelo. La zeolita presentó una favorable capacidad de intercambio catiónico de 1,8 mg/g. Los resultados demostraron una eficiencia significativa en la eliminación de boro, mientras que la eliminación de sodio fue limitada, con episodios ocasionales de desorción. El análisis de superficie de respuesta reveló condiciones óptimas para la eliminación de cada elemento. Además, se estudió la cinética de adsorción y los efectos del pH, destacando su influencia en la sorción de sodio. Un modelo cinético de pseudo-primer orden resultó adecuado para describir la cinética de sorción de este mineral. Estos resultados mejoran la comprensión y realzan la eficacia de la zeolita en la mejora del agua de riego.
Citas
Cataldo, E.; Salvi, L.; Paoli, F.; Fucile, M.; Masciandaro, G.; Manzi, D.; Masini, C.M.; Mattii, G.B. Application of Zeolites in Agriculture and Other Potential Uses: A Review. Agronomy 2021, 11, 1547. https://doi.org/10.3390/agronomy11081547.
Nakhli, S.A.A.; Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. Application of Zeolites for Sustainable Agriculture: A Review on Water and Nutrient Retention. Water Air. Soil. Pollut. 2017, 228, 464. https://doi.org/10.1007/s11270-017-3649-1.
Ramesh, K.; Reddy, D.D. Chapter Four—Zeolites and Their Potential Uses in Agriculture. In Advances in Agronomy; Sparks, D.L., Ed.; Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2011; Volume 113, pp. 219–241.
Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of Natural Zeolites on Agriculture and Food Production. J. Sci. Food Agric. 2017, 97, 3487–3499. https://doi.org/10.1002/jsfa.8312.
Abadzic, S.D.; Ryan, J.N. Particle Release and Permeability Reduction in a Natural Zeolite (Clinoptilolite) and Sand Porous Medium. Environ. Sci. Technol. 2001, 35, 4502–4508. https://doi.org/10.1021/es001868s.
de Campos Bernardi, A.C.; Anchão Oliviera, P.P.; de Melo Monte, M.B.; Souza-Barros, F. Brazilian Sedimentary Zeolite Use in Agriculture. Microporous Mesoporous Mater. 2013, 167, 16–21. https://doi.org/10.1016/j.micromeso.2012.06.051.
Méndez-Argüello, B.; Lira-Saldivar, R.H.; Méndez-Argüello, B.; Lira-Saldivar, R.H. Uso potencial de la zeolita en la agricultura sustentable de la nueva revolución verde. Ecosistemas Y Recur. Agropecu. 2019, 6, 191–193. https://doi.org/10.19136/era.a6n17.1810.
Akash, T.; Samvrudhi, K.; Upendra, R.; Riyaz, M. Biosensors for the Detection of Toxic Contaminants from Water Reservoirs Essential for Potable and Agriculture Needs: A Review. In Proceedings of the 2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Nitte, India, 19–20 November 2021; IEEE: Nitte, India, 2021; pp. 193–198.
Zaman, M.; Shahid, S.A.; Heng, L. Irrigation Water Quality. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Zaman, M., Shahid, S.A., Heng, L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 113–131, ISBN 978-3-319-96190-3.
Malakar, A.; Snow, D.D.; Ray, C. Irrigation Water Quality—A Contemporary Perspective. Water 2019, 11, 1482. https://doi.org/10.3390/w11071482.
FAO Water Quality for Agriculture. Available online: https://www.fao.org/3/t0234e/T0234E00.htm (accessed on 19 October 2023).
Rodríguez Coca, L.I.; García González, M.T.; Gil Unday, Z.; Jiménez Hernández, J.; Rodríguez Jáuregui, M.M.; Fernández Cancio, Y. Effects of Sodium Salinity on Rice (Oryza sativa L.) Cultivation: A Review. Sustainability 2023, 15, 1804. https://doi.org/10.3390/su15031804.
Shah, A.; Wu, X.; Ullah, A.; Fahad, S.; Muhammad, R.; Yan, L.; Jiang, C. Deficiency and Toxicity of Boron: Alterations in Growth, Oxidative Damage and Uptake by Citrange Orange Plants. Ecotoxicol. Environ. Saf. 2017, 145, 575–582. https://doi.org/10.1016/j.ecoenv.2017.08.003.
Gupta, U.C. Boron Nutrition Of Crops. In Advances in Agronomy; Brady, N.C., Ed.; Academic Press: Cambridge, MA, USA, 1980; Volume 31, pp. 273–307.
Shireen, F.; Nawaz, M.A.; Chen, C.; Zhang, Q.; Zheng, Z.; Sohail, H.; Sun, J.; Cao, H.; Huang, Y.; Bie, Z. Boron: Functions and Approaches to Enhance Its Availability in Plants for Sustainable Agriculture. Int. J. Mol. Sci. 2018, 19, 1856. https://doi.org/10.3390/ijms19071856.
Yang, G. Sorption and Reduction of Hexavalent Uranium by Natural and Modified Silicate Minerals: A Review. Env. Chem. Lett. 2023, 21, 2441–2470. https://doi.org/10.1007/s10311-023-01606-1.
Eberle, S.; Schmalz, V.; Börnick, H.; Stolte, S. Natural Zeolites for the Sorption of Ammonium: Breakthrough Curve Evaluation and Modeling. Molecules 2023, 28, 1614. https://doi.org/10.3390/molecules28041614.
Kolmykova, L.I.; Nikashina, V.A.; Korobova, E.M. Experimental Study of the Sorption Properties of Natural Zeolite-Containing Tripolite and Their Ability to Purify Aqueous Solutions Contaminated with Ni and Zn. Env. Geochem Health 2023, 45, 267–274. https://doi.org/10.1007/s10653-022-01346-1.
Reich, R.; Danisi, R.M.; Kluge, T.; Eiche, E.; Kolb, J. Structural and Compositional Variation of Zeolite 13X in Lithium Sorption Experiments Using Synthetic Solutions and Geothermal Brine. Microporous Mesoporous Mater. 2023, 359, 112623. https://doi.org/10.1016/j.micromeso.2023.112623.
Falkenmark, M. Water and Mankind: A Complex System of Mutual Interaction. Ambio 1977, 6, 3–9.
Pashley, N.E.; Bind, M.-A.C. Causal Inference for Multiple Treatments Using Fractional Factorial Designs. Can. J. Stat. 2023, 51, 444–468. https://doi.org/10.1002/cjs.11734.
Antony, J. Design of Experiments for Engineers and Scientists; Elsevier: Amsterdam, The Netherlands, 2023; ISBN 978-0-443-15174-3.
Porter, J.F.; McKay, G.; Choy, K.H. The Prediction of Sorption from a Binary Mixture of Acidic Dyes Using Single- and Mixed-Isotherm Variants of the Ideal Adsorbed Solute Theory. Chem. Eng. Sci. 1999, 54, 5863–5885. https://doi.org/10.1016/S0009-2509(99)00178-5.
Liu, Y.; Shen, L. From Langmuir Kinetics to First- and Second-Order Rate Equations for Adsorption. Langmur 2008, 24, 11625–11630. https://doi.org/10.1021/la801839b.
Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5.
Weber, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. https://doi.org/10.1061/JSEDAI.0000430.
Huang, L.; Yang, J.; Zhao, Y.; Miyata, H.; Han, M.; Shuai, Q.; Yamauchi, Y. Monolithic Covalent Organic Frameworks with Hierarchical Architecture: Attractive Platform for Contaminant Remediation. Chem. Mater. 2023, 35, 2661–2682. https://doi.org/10.1021/acs.chemmater.2c03282.
Montaño, C.; Montaño, J. Advances in the Adsorption Capacity, Rupture Time and Saturation Curve of Natural Zeolites; IntechOpen Limited, London, UK, 2023; ISBN 978-1-83768-515-8. http://dx.doi.org/10.5772/intechopen.110008.
Derouane, E.G.; Védrine, J.C.; Pinto, R.R.; Borges, P.M.; Costa, L.; Lemos, M.A.N.D.A.; Lemos, F.; Ribeiro, F.R. The Acidity of Zeolites: Concepts, Measurements and Relation to Catalysis: A Review on Experimental and Theoretical Methods for the Study of Zeolite Acidity. Catal. Rev. 2013, 55, 454–515. https://doi.org/10.1080/01614940.2013.822266.
Elaiopoulos, K.; Perraki, T.; Grigoropoulou, E. Mineralogical Study and Porosimetry Measurements of Zeolites from Scaloma Area, Thrace, Greece. Microporous Mesoporous Mater. 2008, 112, 441–449. https://doi.org/10.1016/j.micromeso.2007.10.021.
Morante-Carballo, F.; Montalván-Burbano, N.; Carrión-Mero, P.; Espinoza-Santos, N. Cation Exchange of Natural Zeolites: Worldwide Research. Sustainability 2021, 13, 7751. https://doi.org/10.3390/su13147751.
Cakmak, I.; Brown, P.; Colmenero-Flores, J.M.; Husted, S.; Kutman, B.Y.; Nikolic, M.; Rengel, Z.; Schmidt, S.B.; Zhao, F.-J. Micronutrients. In Marschner’s Mineral Nutrition of Plants, 4th ed.; Rengel, Z., Cakmak, I., White, P.J., Eds.; Academic Press: San Diego, CA, USA, 2023; pp. 283–385, ISBN 978-0-12-819773-8.
Machado, R.M.A.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. https://doi.org/10.3390/horticulturae3020030.
Maas, E.V.; Grattan, S.R. Crop Yields as Affected by Salinity. In Agricultural Drainage; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1999; pp. 55–108, ISBN 978-0-89118-230-6.
Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911.
Tan, S.; Jean, J.; Pralong, V.; Moldovan, S.; Guo, H.; Mintova, S. Effect of Particle Size on the Sodium Ions Utilization Efficiency of Zeolite-Templated Carbon as the Anode in a Sodium Ion Battery. Cryst. Growth Des. 2023, 23, 4065–4073. https://doi.org/10.1021/acs.cgd.2c01470.
Núñez-Gómez, D.; Lapolli, F.R.; Nagel-Hassemer, M.E.; Lobo-Recio, M.Á. Optimization of Fe and Mn Removal from Coal Acid Mine Drainage (AMD) with Waste Biomaterials: Statistical Modeling and Kinetic Study. Waste Biomass Valor 2020, 11, 1143–1157. https://doi.org/10.1007/s12649-018-0405-8.
Rostamian, R.; Heidarpour, M.; Farhad, S.; Afyuni, M. Preparation, characterization and sodium sorption capability of rice husk carbonaceous adsorbents. Fresenius Environ. Bulletin. 2015
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Dámaris Núñez Gómez, Alejandro Andy Maciá Vázquez, Pilar Legua Murcia, Vicente Lidón Noguera, Agustín Conesa Martínez, Juan José Martínez Nicolás, Pablo Melgarejo Moreno

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
